New Synthetic Protocol with Trifluoro-1-propynylamines. An Efficient Access to α -(Trifluoromethyl)- δ -keto Amides *via* Hetero Diels-Alder Reaction

Toshiya Mantani, Tsutomu Konno, Takashi Ishihara,* and Hiroki Yamanaka

Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585

(Received March 27, 2000; CL-000282)

N,*N*-Dibutyl(3,3,3-trifluoro-1-propynyl)amine readily reacts with α , β -unsaturated ketones or aldehydes in refluxing benzene for 3–36 h to form the corresponding Diels-Alder adducts, 2-(dibutylamino)-3-(trifluoromethyl)-4*H*-pyrans, of which the successive treatment with alumina at ambient temperature for 1 h leads to the ring-opening products, α -trifluoromethylated δ -keto amides in fairly good to excellent yields.

Carboxylic acid derivatives bearing the trifluoromethyl group at the α position are extremely useful intermediates for the preparation of various sorts of trifluoromethyl-incorporated compounds, especially those of biological and material interest. Although the literature includes several reports dealing with the synthetic methods for α -trifluoromethyl carboxylic acid derivatives,^{1,2} they are not necessarily sufficient to the diversity of demands in organic synthesis. Therefore, it is of much synthetic value to develop a new method for preparing such carboxylic acid derivatives.

Table 1. Cycloaddition reaction of 1 with MVK

Entry	Solvent	Temp.	Time/h	Yield ^a /% of 2a	Recovery ^a /% of 1
1	CH ₂ Cl ₂	r.t.	3	71	28
2	CH_2Cl_2	r.t.	24	85	tr
3	CH_2Cl_2	refl.	3	97	tr
4	benzene	refl.	3	>99 (99)) 0
5	toluene	refl.	3	82	0

^aDetermined by ¹⁹F NMR. Value in parentheses is of isolated yield.

During the course of our studies to extend the chemistry and applications of fluorine-containing 1-alkenylamines (enamines)³ and 1-alkynylamines (ynamines),^{4,5} we have found that *N*,*N*-dibutyl(3,3,3-trifluoro-1-propynyl)amine (1) readily undergoes hetero Diels-Alder reaction with α , β -unsaturated ketones or aldehydes yielding the corresponding cycloadducts **2**,⁶ followed by simple treatment with alumina to lead to α -trifluoromethylated δ -keto amides **3**. This communication discloses the preliminary results demonstrating that the present reactions can serve as a novel efficient and convenient route to the synthesis of such amides, which are difficult to prepare by other methods.

When the ynamine **1**, prepared in three steps from commercially available pentafluoropropanol,⁴ was allowed to react with 1.5 equiv of 3-buten-2-one (methyl vinyl ketone, MVK) in dichloromethane at room temperature for 3 h, 2-(dibutylamino)- 6-methyl-3-(trifluoromethyl)-4*H*-pyran (**2a**)⁷ was formed in 71% yield, the starting amine being left unchanged in 28% yield, as shown in Table 1 (Entry 1). Either prolonged reaction period or higher reaction temperature induced the formation of **2a** in excellent yields (Entries 2,3). The best result was obtained from the reaction in refluxing benzene for 3 h, where **2a** was provided quantitatively (Entry 4). The reaction at the reflux temperature of toluene resulted in a lowering of the yield of **2a**, due to its thermal decomposition (Entry 5). It is worthwhile to note that the previously reported [2+2]-type reaction⁵ with α,β-unsaturated carbonyl compounds, facilitated by a Lewis acid catalyst, leading exclusively to (*Z*)-α-(trifluoromethyl)-α,β-unsaturated amides.

More significantly, the resultant cycloadduct **2a** was found to be readily converted into *N*,*N*-dibutyl-2-(trifluoromethyl)-5oxohexanamide (**3a**)⁸ by the action of basic or acidic reagents, as summarized in Table 2. Thus, on treating **2a** with 20% NaOH, silica gel (1 g/mmol of **2a**), or alumina (1 g/mmol of **2a**) at room temperature for 1 h, the corresponding amide **3a** was obtained in 91%, 82%, and 99% yields, respectively (Entries 4–6). The similar treatment with 3–10% HCl gave rise to **3a** in 46–70% yields, along with the formation of 2-(trifluoromethyl)-4-hexen-5-olide (**4a**)⁹ (30-50%) (Entries 2,3). Exposure of **2a** to H₂O did not cause any chemical changes (Entry 1).

Table 2. Transformation of cycloadduct 2a

Entry	Reagent	Ratio ^a of 3a : 4a	Yield ^b /% of 3a	Yield ^b /% of 4a
1°	H ₂ O	_	0	0
2	10% HC1	46 : 54	46	50
3	3% HC1	70:30	70	30
4	20% NaOH	>99 : <1	91	0
5	Silica gel	83:17	82	tr
6	Alumina	>99 : <1	99	0

^aDetermined by ¹⁹F NMR. ^bIsolated yields. ^cCarried out for 24 h.

Eventually, these reactions are recommended to be carried out in the following typical manner. A solution of **1** (1 mmol) and 3-buten-2-one (1.5 mmol) in benzene (3 mL) was gently refluxed with stirring under an atmosphere of argon for 3 h. After cooling, alumina (1 g, ICN Alumina N, Act. 1) was added to the reaction mixture and the whole was stirred at ambient temperature for 1 h. Filtration and concentration under vacuum followed by silica-gel column chromatography afforded analytically pure α -trifluoromethylated amide **3a** in 98% overall yield.

$$\begin{array}{c} R^{1} \longrightarrow O \\ R^{2} \longrightarrow R^{3} \\ R^{3} \\ R^{3} \end{array} \xrightarrow{\mathsf{CF}_{3}} \begin{array}{c} \mathsf{NBu}_{2} \\ \mathsf{benzene, reflux, Time} \end{array} \xrightarrow{\mathsf{R}^{1} \longrightarrow \mathsf{NBu}_{2} \\ R^{2} \longrightarrow \mathsf{CF}_{3} \\ R^{3} \\ R^{3} \end{array} \xrightarrow{\mathsf{alumina}} \begin{array}{c} \mathsf{alumina} \\ \mathsf{benzene, r.t., 1 h} \\ \mathsf{O} \\ R^{3} \\ \mathsf{O} \\ \mathsf{R}^{3} \\ \mathsf{O} \\ \mathsf{O} \\ \mathsf{O} \\ \mathsf{R}^{3} \\ \mathsf{O} \\ \mathsf{$$

Table 3. Preparation of α -(trifluoromethyl)- δ -keto amides 3 from the ynamine 1 and α , β -unsaturated carbonyl compounds

Enter	Carbonyl	Time	Cycloadduct 2	Yield ^a /%	Kata amida 3	Yield ^b /%	Diastaraa ratia ^c
Eilu y		Time/n		01 2	Keto annue 3	01.5	Diastereo ratio
1	0 L	3	2a CF ₃	99	3a O CF ₃ NBu ₂	99	
2		3	2bCF ₃	94	$3b \xrightarrow{CF_3}_{0} NBu_2$	93	_
3	Ŷ	36	$2c$ U CF_3	85	$3c$ \downarrow $CF_3 \\ NBu_2$	96	70 : 30
4		36	2d CF ₃	54	$3d \xrightarrow{CF_3}_{O} NBu_2$	99	80 : 20
5	O Ph	36	$2e \qquad \bigcup_{Ph}^{O} CF_3$	tr		0	_
6	OMe	36	2f 0 NBu ₂ CF ₃	0			_
7	н	36	2g ONBU2 CF3	58	3g H H H H H H H H H H H H H H H H H H H	55	70:30

^aDetermined by ¹⁹F NMR. ^bValues are of isolated product and are based on 2. ^cMeasured by ¹⁹F NMR. The stereochemistry is not assigned.

Table 3 summarizes the results of these reactions. Various α,β -unsaturated ketones and aldehyde participated nicely in the hetero Diels-Alder reaction with **1**, giving the corresponding 2-(dibutylamino)-3-(trifluoromethyl)-4*H*-pyrans **2**⁹ in fairly good to excellent yields. It should be mentioned that the cycloaddition reactions of β -substituted α,β -unsaturated ketones (Entries 4-6) or α,β -unsaturated aldehyde (Entry 7) occurred very reluctantly and hence required longer reaction time. Particularly the reactions of β -phenyl- and β -methoxy-substituted ones did not take place at all, the starting ynamine **1** being recovered quantitatively. Thus obtained cycloadducts **2** were readily transformed into the corresponding amides **3**⁹ by the action of alumina.

In short, we have demonstrated that the fluorinated ynamine 1 reacts as a dienophile with α , β -unsaturated ketones or aldehydes to produce the cycloadducts 2, whose successive treatment with alumina provides α -(trifluoromethyl)- δ -keto amides 3. This sequence of the reactions can constitute a novel convenient means for the synthesis of such a unique type of compounds, which are otherwise accessible with difficulty.

References and Notes

- For the methods with trifluoromethylated building blocks, see: T. Yokozawa, T. Nakai, and N. Ishikawa, *Tetrahedron Lett.*, 25, 3987 (1984); T. S. Everett, S. T. Purrington, and C. L. Bumgardner, J. Org. Chem., 49, 3702 (1984); T. Yokozawa, T. Nakai, and N. Ishikawa, Chem. Lett., 1987, 1971; G. Shi and Y. Xu, J. Org. Chem., 55, 3383 (1990).
- 2 For the methods via trifluoromethylation, see: K. Iseki, T. Nagai, and Y. Kobayashi, *Tetrahedron: Asymmetry*, 5, 961 (1994); Y. Dan-oh and K. Uneyama, *Bull. Chem. Soc. Jpn.*,

68, 2993 (1995).

- H. Yamanaka, K. Shiomi, and T. Ishihara, *Tetrahedron Lett.*, 36, 7267 (1995); H. M. Park, T. Uegaki, T. Konno, T. Ishihara, and H. Yamanaka, *Tetrahedron Lett.*, 40, 2985 (1999).
- 4 H. Yamanaka, T. Mantani, K. Shiomi, and T. Ishihara, *Chem. Lett.*, **1998**, 615.
- 5 T. Mantani, K. Shiomi, T. Ishihara, and H. Yamanaka, *Chem. Lett.*, **1999**, 855.
- 6 For the [4+2] cycloaddition of fluorine-free 1-alkynylamines, see: J. Ficini, J. Besseyre, and A. Krief, *Bull. Chim. Soc. Fr.*, **1976**, 987; J. Ficini, *Tetrahedron*, **32**, 1449 (1976); J. Collard-Motte and Z. Janousek, *Top. Curr. Chem.*, **130**, 89 (1986); A. Padwa, Y. Gareau, B. Harrison, and A. Rodriguez, *J. Org. Chem.*, **57**, 3540 (1992).
- 7 **2a**: IR (cm⁻¹) 1720 (C=C), 1655 (C=C); ¹H NMR (CDCl₃, Me₄Si, 300 MHz) $\delta = 0.90$ (t, J = 7.2 Hz, 6H), 1.23–1.50 (m, 8H), 1.74 (dt, J = 1.5, 1.2 Hz, 3H), 2.80 (dd, J = 3.0, 1.2 Hz, 2H), 2.88 (t, J = 7.5 Hz, 4H), 4.62 (t, J = 1.5, 3.0 Hz, 1H); ¹⁹F NMR (CDCl₃, CFCl₃, 84.2 MHz) $\delta = -60.67$ (s, 3F); MS m/z (rel. intensity) 291 (M⁺, 13), 57 (100).
- 8 **3a**: IR (cm⁻¹) 1717 (C=O), 1651 (C=O); ¹H NMR (CDCl₃, Me₄Si, 300 MHz) δ = 0.93 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H), 1.22-1.60 (m, 8H), 2.07–2.18 (m, 1H), 2.14 (s, 3H), 2.60 (dt, J = 6.5, 18.3 Hz, 1H), 2.43 (dt, J = 6.6, 18.3 Hz, 1H), 3.19–3.65 (m, 6H); ¹⁹F NMR (CDCl₃, CFCl₃, 84.2 MHz) δ = -67.29 (d, J = 8.8 Hz, 3F); HRMS Found: m/z 309.1915. Calcd for C₁₅H₂₆F₃NO₂: M, 309.1915.
- 9 All products gave satisfactory spectral and analytical data.